DOLOČANJE TOMV VIRUSA V VODAH S PCR V REALNEM ČASU

Jana BOBEN1, Matjaž PETERKA2, Petra KRAMBERGER3, Katarina CANKAR4, Nataša PETROVIČ5, Aleš STRANČAR6, Maja RAVNIKAR7

1, 4, 5, 7 Nacionalni inštitut za biologijo, Ljubljana
2, 3, 8 Separations d. o. o., Ljubljana

IZVLEČEK

Ključne besede: laboratorijsko določanje, PCR v realnem času, ToMV virus, voda

ABSTRACT

DETECTION OF TOMV VIRUS IN WATER USING REAL-TIME PCR
Irrigation waters can represent a source of infection for plants as plant viruses can enter the plants through the root system and cause disease symptoms on host plants. Viruses can also be released into irrigating waters and spread to the neighboring plants. Concentration of plant viruses in irrigation waters is usually below the sensitivity of frequently used detection methods such as ELISA. ToMV (Tomato mosaic virus) was used as a model for development of a highly specific and more sensitive real-time PCR assay. ToMV is known to cause symptoms on Nicotiana glutinosa in concentrations below the sensitivity of ELISA. Newly developed method is around 1000-times more sensitive and enables us to detect the viruses in much lower concentrations. CIM® Convective Interaction Media disk monolithic columns were also used in order to concentrate water samples where the virus concentration was below the detection limit of real-time PCR. They proved to be successful in concentrating the water samples where virus concentration was below the detection limit of real-time PCR. Combination of concentrating procedure using CIM monolithic chromatographic supports and detection of viruses using a more sensitive method can be used to effectively monitor the condition of irrigation waters and to use the information about the health status of waters in intensive plant production.

Key words: laboratory detection, real-time PCR, ToMV virus, water

1univ. dipl. mikrobiol., Večna pot 111, SI-1000 Ljubljana
2dr., univ. dipl. inž. zoot., Teslova 30, SI-Ljubljana
3univ. dipl. biol., Teslova 30, SI-Ljubljana
4univ. dipl. biol., Večna pot 111, SI-1000 Ljubljana
5dr., univ. dipl. biol., Večna pot 111, SI-1000 Ljubljana
6doc. dr., univ. dipl. inž. kem., Teslova 30, SI-Ljubljana
7prof. dr., univ. dipl. biol., Večna pot 111, SI-1000 Ljubljana
1. UVOD

Pomemben vir okužbe za rastline so lahko namakalne vode (Horvath, 1999). Prek koreninskega sistema lahko rastlinski patogeni virusi vstopijo v rastline in na njih povzročijo pojav bolezenskih znakov. Prenos lahko poteka tudi v nasprotni smeri, saj lahko virusi v namakalno vodo preidejo iz okoliških okuženih rastlin in se preko vode razširijo na druge gostiteljske rastline (Koenig, 1986). Za virus moznika paradizika (ToMV – Tomato mosaic virus) je značilno, da je razširjen skoraj povsod v okolju. Med gostiteljskimi rastlinami se lahko prenaša na različne rastline. Med pomembnejši so: melanski prenos s pomočjo katerega se virus razširi na zdrave gostiteljske rastline s rastlinskim sokom okuženih rastlin. Možni pa so še prenosi virusa z rokami, z orodjem, s cepljencem med okuženimi in zdravimi rastlinami, s semenom, z zemljo (substratom) in tudi z namakalno vodo (Huttinga in Rast, 1985). V pretečih raziskavah smo dokazali (Kramberger s sod. 2004), da ToMV okužuje testne rastline Nicotiana glutinosa tudi v koncentracijah, ki so pod mejo detekcije serološke semikvantitativne metode ELISA. Po zalivanju rastlin z nizkimi koncentracijami virusa je namreč prišlo do pojava tipičnih bolezenskih znakov na rastlinah.

ToMV tobanovirus smo zaradi omenjenih razlogov izbrali kot model za razvoj občutljivejše metode PCR v realnem času, saj smo želeli določiti virusne delece v namakalnih vodah, kjer so koncentracije virusa večinoma pod mejo detekcije splošno uporabljeneh ELISA testa. Močno razredčeni vzorci nukleinskih kislin ali virusnih delecev se lahko uspešno koncentrirajo z uporabo CIM monotnih kromatografskih nosilcev (Branović s sod., 2003 in Kramberger s sod. 2004) in zato smo njihovo uspešnost preverili tudi v primeru namakalnih voda, okuženih s ToMV, kjer je bila koncentracija virusnih delecev tudi pod mejo detekcije za PCR v realnem času. Obenem smo preverili občutljivost PCR v realnem času glede na občutljivost običajnega serološkega diagnosticnega testa ELISA.

2. MATERIALI IN METODE

2.1 Virusni material

Za namočitev ToMV virusa smo uporabili testne rastline Nicotiana clevelandii. Iz rastlinskega materiala smo očistili virusne delece s postopkom ultracentrifugiranja. Končna koncentracija virusnih delecev je bila 0,42 mg/mL. V nadaljnjih poskusih za razvoj metode smo uporabili ToMV v omenjeni koncentraciji.

2.2 Razvoj specifičnega PCR v realnem času

S pomočjo računalniškega programa smo na odseku virusne nukleinske kisline, ki kodira za gibalni protein, skonstruirali začetne oligonukleotide in specifično sonda. Z njimi pomnožimo lahko 71 bp dolg odsek zapisa za virusni gibalni protein. Določili smo mejo občutljivosti in kvantifikacije testa ter njegovo specifičnost za ToMV.

2.3 Analiza vzorcev namakalne vode

Različne vzorce namakalnih voda iz različnih območij Slovenije smo testirali na ToMV takoj po vzorčenju s PCR v realnem času. V primerih, ko ToMV virusa nismo mogli določiti, smo vzorce namakalne vode koncentrirali s CIM® monotnih kromatografskih nosilcev (BIA Separations, Ljubljana). Elucijeske frakcije, ki smo jih dobili po postopku koncentriranja smo testirali na prisotnost ToMV.
2.4 Koncentriranje namakalnih voda s CIM

Preverili smo učinkovitost uporabe CIM za koncentriranje vzorcev namakalne vode. Vzorec naravne namakalne vode smo okužili z znano koncentracijo ToMV – en vzorec s koncentracijo 10^6 mg/mL in drugi vzorec s koncentracijo 10^7 mg/mL. Za analizo okužene vode smo uporabili PCR v realnem času. ToMV smo v vodi določili pred koncentriranjem s CIM in po njem.

2.5 Primerjava kvantitativne in semikvantitativne metode

Semikvantitativni ELISA test smo izvedli tako, kot je predhodno opisala Kramberger s sod. (2004). Določili smo mejo detekcije za semikvantitativni test in le-to primerjali z mejo detekcije kvantitativnega PCR v realnem času.

3. REZULTATI

Vzorce za preverjanje občutljivosti za ToMV specifičnega PCR v realnem času smo pripravili tako, da smo čisti virusni pripravek redčili v pufru. Ugotovili smo, da je koncentracija ToMV, ki jo z gotovostjo določimo, 10^9 mg/mL (delcev na mL). To pomeni, da lahko določimo količine ToMV, ki se gibalijo okoli 0,001 ng na mL vode, kar je za približno 1000-krat več, kot pri uporabi semikvantitativne metode ELISA. Slednje določimo okoli 2 ng ToMV na mL vode.

Pri analizi naravne namakalne vode, kjer ToMV nismo mogli določiti PCR v realnem času, smo uporabili postopek koncentriranja s CIM monolitnimi kromatografskimi nosilci. V elucijskih frakcijah, ki so bile rezultat postopka koncentriranja s kromatografskimi kolonami smo uspešno dokazali ToMV. Uspešnost kromatografskih nosilcev za koncentriranje virusov smo določili na vzorcih z znano začetno koncentracijo. Ugotovili smo, da njihova uporaba pred testiranjem za dva reda velikosti (z 10^5 mg/mL na 10^7 mg/mL in z 10^7 mg/mL na 10^9 mg/mL) poveča občutljivost PCR v realnem času in so zato zelo uspešni za koncentriranje močno razredčenih vzorcev namakalnih voda.

1. SKLEPI

- Razvili smo za ToMV specifično metodo PCR v realnem času. Prilagodili smo jo za analizo naravnih namakalnih voda in za analizo kromatografskih frakcij, ki jih dobimo po postopku koncentriranja. V obeh primerih se je metoda izkazala kot uspešna.
- CIM monoliti kromatografski nosilci so se izkazali kot uspešni v primeru koncentriranja s ToMV okuženih naravnih namakalnih voda.
- Metoda PCR v realnem času je za 3 velikostne rede (okoli 1000-krat) bolj občutljiva od serološke semikvantitativne metode ELISA.
- Koncentriranje vzorcev s CIM monoliti kromatografski nosilci je uspešno, saj omogoča, da lahko določimo ToMV tudi v vzorcih, kjer je koncentracija tudi pod mejo občutljivega PCR v realnem času in poveča njegovo občutljivost za dva velikostna reda.
- Serološka metoda ELISA je ustrezen predvsem za analizo rastlinskih vzorcev, kjer so koncentracije virusnih delecev dokaj visoke in je metoda dovolj občutljiva. Za analizo namakalnih voda pa je ustrezenja metoda PCR v realnem času, saj je občutljivost tega testa mnogo višja. Kombinacija postopka koncentriranja s CIM in analize s PCR v realnem času je trenutno dokaj zanesljiv postopek za določanje rastlinskih virusov – v tem primeru ToMV – v zelo razredčenih vzorcih.
5. ZAHVALA

Zahvaljujemo se Alešu Blatniku in Klaudiji Matjaž Petek za vzorčenje ter Ministrstvu za visoko šolstvo, znanost in tehnologijo za financiranje projekta.

6. LITERATURA


